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Importance of the Darrieus-Landau instability for strongly corrugated turbulent flames
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The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case
of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is
corrugated both by the external turbulence and by the intrinsic flame instgtiléyDarrieus-Landau instabil-
ity). The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the
flame instability is of principal importance when the maximal hydrodynamic length scale is much larger than
the cutoff wavelength of the instability, provided the turbulent intensity is not too high.
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I. INTRODUCTION when such a large number of different length scales is in-
volved in the problem. The original papéds3,14] developed
The role of the hydrodynamic flame instability for pre- the renormalization ideas in the artificial context of a flame
mixed turbulent burning in gas turbines and car engines hawith zero thermal expansion when the densities of the fuel
been widely discussed, but the final answer still remains unmixture, p;, and the burnt gas,, are the same, i.e., the
known[1-3]. For a long time it was supposed that the insta-expansion facto® =p;/p, is equal to unity,®=1. How-
bility influence is minor[1,4]. Now there is mounting evi- ever, the assumption dd =1 is quite far from reality, in-
dence that the flame instability is of primary importance forstead, laboratory and industrial combustion is accompanied
turbulent burning, and sometimes this effect may even domiby rather strong expansion of burning gaseous mixt@re,
nate[5—-11]. For example, the experimeris,6] demonstrate =5-10. As a matter of fact, it is the density drop that causes
that flame propagation velocity,, may increase by a factor the DL instability, and the larger is the expansion fadfgr
of 10 and larger in comparison with the planar flame velocitythe stronger is the instabilifyl,2]. The joint action of the DL
U; because of the Darrieus-Land&DL) instability only. instability and the external turbulence has been investigated
Such a velocity increase is comparable to the velocity obin Refs.[11,15 on the basis of a model equation in the case
served for turbulent flamdg},12]. The experiment§8] with of weakly wrinkled flames. It has been obtained in Refs.
turbulent flames at different pressures show that flames witfil1,15 that the flame velocity increase produced by weak
the reduced instability effect propagate three to four timegurbulence and weak DL instability working together is
slower. Similar tendency may be understood using the follarger or about the sum of the turbulence effect and the in-
lowing order-of-magnitude reasoning. Turbulent burning instability effect taken separately.
gas turbines and car engines happens typically in the flamelet In the present paper we expand the renormalization ideas
regime, for which a flame front may be strongly corrugatedof Ref.[14] to the case of a flame front strongly corrugated
on large length scales, but it retains the same internal struégoth by the external turbulence and by the DL instability.
ture as laminar flamefgl]. Strictly speaking, the flamelet Assuming self-similar properties of the corrugated flame dy-
regime takes place when the planar flame velotityis  namics, we find analytical formulas for the propagation ve-
much larger than the characteristic velocity of turbulent pul-locity of a strongly turbulent flame. We demonstrate that the
sationsU,ms=U;ms(\), at the length scale equal to the flame DL instability is of principal importance when the maximal
thickness\ =L;, that is,u,ns(L¢)/U;<1. Thus, the effects hydrodynamic length scale is much larger than the cutoff
of turbulence are relatively small on small length scales wavelength of the DL instability, provided the turbulent in-
=L by definition of the flamelet regime. On large length tensity is not too high.
scales turbulent velocity increases according to the Kolmog-
orov lawu;mg(\) A%, and it may become much larger than | STRONGLY CORRUGATED FLAMES PRODUCED
the planar flame velocity; . However, according to the ex- BY TURBULENCE ONLY
perimentg5,6] the DL instability leads to a fractal structure
of the flame front with the velocity of flame propagation According to the well-known Clavin-Williams formula
increasing with length scale in the same wly,(\) o<\, [16] obtained in the case of no thermal expandia 1 and
which implies Une(A)/Uy(N)cu,m(Lf)/Us<1 for all ~ zero flame thickness, weak turbulence increases the velocity
length scales of the gas flow. Of course, the above reasonirf @ turbulent flameAU=U,,—U>0, as
is very qualitative, and one needs a more quantitative inves-
tigation to understand the role of the DL instability in the AU/U¢= U7, JUZ, 1)
flamelet burning regime. Unfortunately, direct numerical
simulations cannot help in this case, since the characteristighereU,,s=U,ms(L;) andL; is the integral length scale of
length scale of the flow, 10-100 cm, exceeds the typicathe turbulent flow. Equatiofil) may be also presented with
flame thickness, 10°~10 2 cm, by many orders of magni- the help of spectral density,(k) of the turbulent kinetic
tude. Renormalization analysigl3,14 may work better energy
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K, only, when there is no external turbulence. It has been ob-
AU/Uf:Uf_ZJ ey(k)dk, (2)  tained experimentally5,6] that a spherical flame unstable
ke according to the DL mechanism accelerates because of the
where corrugated structure of the front. The acceleration implies
that the velocity of flame propagatiokl,,, increases with
k, the maximal characteristic length scale of the hydrodynamic
Urms™= Jk el(n)dn, () motion, \ 4y, as
k, Uw:Uf()\max/)\c)Da (10)
Ulms= f si(k)dk, 4)
k where) . is the cutoff wavelength of the DL instability pro-
portional to the flame thickness amlis a constant power
exponent. The self-similar flame acceleration has been inter-
preted as development of a fractal structure at the flame front
with wrinkles of different wave numbers imposed on each
the latterL>L,, k<k,. I_nséhe case of the Kolmogorov other[5,6]. The theoretical studies of the stability properties
turbulent spectrune(k) k>~ we find from Eq.(3), of curved flameg3,17,19 lead to similar conclusions. In
)2/3}1 that case the cutoff wavelength of the DL instabilily,
k_5/3~ —uU

ki=2w/L; and k,=2#/L, are the wave numbers corre-
sponding to the integral and Kolmogordissipation length
scales.; andL,,, the former being usually much larger than

2 1213 -513 plays the role of the inner cutoff in the fractal cascade @nd
rms™t

2 k
et(k>=§U?msk$“[l—(k—‘

is the excess of the fractal dimension of the flame front over
®  the embedding dimensidithe embedding dimension is 2 for

Equation(1) has been extrapolated to the case of a strongl);he realistic experiments with three-dimensional flpwisc-

turbulent flame assuming self-similar properties of the corru£0rding to the experimental measuremefi®| the fractal

gated front[14]. Following Ref.[14] we decompose the EXCESS is approximateIQ~1/3 f_or all investigated labora-
whole spectrum of flame wrinkles into components with dif- ©O7Y flames. The theoretical estimaie}17,1§ suggest that

ferent wave number@arrow bands in the spectroneach of ~ the fractal excess depends on the expansion faftor
them providing a similar small increase of the flame front = P(@) with D~1/3 for ©=5-8, typical for laboratory
velocity. Then the first band with the largest possible wavel@mes and>—0 when®— 1. Assuming self-similar prop-

number and the smallest possible length scale increases tREi€S of the fractal cascade we should expect that the “in-

flame velocity asddU;=U,,; — U, termediate” velocity of flame propagatiot)=U(k), pro-
" ' duced by the wrinkles with wave numbers in betwé&eand

dU,; /U¢=—g(ky)dk/UZ. (6)  ke=2m/\, depends ork as
The minus sign comes into E¢6) because the integral in U=Uq(k/k,) P. (11

Eq. (3) is taken fromk to k,,. From the point of view of the
second band with the wave number the valueU,,; plays The last equation may be also presented in a differential form
the role of the new flame velocity. Then the second bangimilar to Eq.(8),
provides the flame velocity increase
dU/U= —ggq (k) dk, (12
dU, /U, = —g(kp)dk/UZ,, 7

with eq=D/k for Ky, <k<k. and e4;=0 whenk=k..
and so on. Let us designate the velocity of flame propagatiopjerek,, ., is the smallest possible wave number allowed by
corresponding to the wrinkles with the wave numbers abovene flow geometry(corresponding to the largest possible
k by U=U(K). Since every band in the spectrum of ﬂamewavelengtbl.
wrinkles leads to infinitesimal increase in the flame velocity,

we can write Eqs(6) and(7) in the form IV. THE JOINT EFFECT OF TURBULENCE AND THE DL

dU/U = —g,(K)dK/UZ. ) INSTABILITY FOR A WEAKLY WRINKLED FLAME

When a flame front with realistically large thermal expan-
sion ® =5-10 propagates in a turbulent flow, then both the
DL instability and the external turbulence contribute to the
velocity increase. In the present section we consider the joint
U2=U2+202 (9) effect of the turbulence and the instability for a weakly

we ot rms wrinkled flame. In general, the velocity increase depends
both on the scaled turbulent intensity?,J/U? and on the
intrinsic parameters of flame dynamics suchégsthe flow
geometry, etc.:

Integrating Eq.(8) over the whole turbulent spectrum one
obtains the propagation velocity,, of a strongly corrugated
flame with zero thermal expansidh=1 [14],

IIl. STRONGLY CORRUGATED FLAMES PRODUCED
BY THE DL INSTABILITY ONLY

Let us consider similar scale-invariant formulas for the 5 5
case of a flame front corrugated because of the DL instability AU/U=F (U7, JUT.0, . ..). (13
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When turbulence is weald?, JU?<1, the last formula may (1) In the artificial case of zero thermal expansién
be reduced to =1, Eqg.(16) coincides with the&s equation proposed in Ref.
[22] and written for a weakly wrinkled flame.
AU/Uf”CdﬁCtUerS/UZ, (14) (2) When thermal expansion is nonzero but ultimately
weak,® —1<1, and turbulence is zero, then E46) goes
with the factorsCq and C, depending on intrinsic flame OVer to the Sivashinsky equatiq3]. Turbulence may be
parameters. Obviously, the ter@®y, specifies the velocity included into the Sivashinsky equation similar to R&f.
increase of a flame front due to the DL instability only, when  (3) In the linear case of small amplitude of flame

turbulent intensity is zert2, JU2=0 wrinkles, Eq.(16) reproduces the dispersion relation of the
rms =f DL instability [24] and linear response of a flame front to
(AU/U{)g=Cy (15) external turbulencg?5]. In that case Eq(16) takes the form
Lf=0 17

This increase has been investigated in a large number of
papers; see the analytical theddQ], the direct numerical gnd
simulationg18,20,21, and the recent reviey]. The veloc-

ity increase results from the balance between the DL insta- Lf=Lu,, (18)
bility, the thermal stabilization, and the nonlinear geometri-

cal (Huygens stabilization. The effect of Huygens respectively. The theorie®4,25 have been developed for
stabilization is also similar to kinematic restoration of turbu-realistically large thermal expansion of burning matter.

lent flames described in RdfLO]. In both cases corrugations  (4) For curved stationary flames with realistically large
of the front(produced either by instability or by turbulence thermal expansion, Eq16) reproduces the nonlinear equa-
are “removed” by local flame propagation. As a matter of tion derived in Ref[19]. In that case Eq(16) is

fact, both Huygens stabilization and kinematic restoration

are produced by the same term of nonlinear equations de- 7f+ A_U_N(f f)=0 (19)
scribing flame dynamics. For example, within the scope of f ne '

the approach of Ref.10], the stabilization/restoration is re-

lated to the first term on the right-hand side of E%).of Ref. (5) An attempt to derive a similar nonstationary nonlinear
[10]. equation led to a rather cumbersome re$lit]; therefore,

At present there is not so much information about theSubsequent studies of weakly turbulent flames subject to the
second factoiC, of Eq. (14). Comparing Eq(14) and the DL instability.[ll,lf'ﬂ have been performed on the basis of a
Clavin-Williams formula, Eq.(1), we can say for sure that Model equatior{26], which is not rigorous but has a rela-
C,=1 for ®=1 (we also haveC4 =0 in the same limit of tively simple form. _ _
©=1). According to the model studi¢s1,15, the factorC, Still, in the present paper a particular form of E#6) is
may be evaluated from below by the respective coefficient oftOt important. What is important is that E@.6) describes a
the  turbulence-induced solution of the flame equations!Veakly wrinkled turbulent flame and takes into account the
which is not influenced by the DL instability directly. The DL instability. The turbulent velocity in Eq(16) may be
main idea of the turbulence-induced solution may be exSPecified as a combination of Fourier harmonics with ran-
plained in the following way. Suppose that dynamics of adom phases similar to Ref9]. For e“xam_ple, mﬂthe case of a
weakly wrinkled flame frontz= f(x,t)—U,t in an external two-dimensional incompressible “stationary” flow consid-

turbulent flowu, may be described by an equation ered in Ref[9] the turbulent velocityi, may be presented in
the laboratory reference frame as

. AU R R .
Lot g =MD = No(uz, B = Na(Uz,u) = Lyt U= > U cogkix+ gp)coskiz+g,),  (20)
(16)
where the amplituded; obey the Kolmogorov spectrum. In

whereZ, L, are linear operators antf;, A,, A are non-  the reference frame of the propagating flame front the turbu-
linear operators of the second order. For example, the effedgnt velocityu, is strongly oscillating,
of kinematic restoration of a weakly wrinkled front origi-
nates from a nonlinear operatdv(f,f)=Vf.Vf=(Vf)2 u,= > U cogkix+ @i )cod kU t+ei,), (21
We are interested in the dynamics of a statistically stationary
flame front in the reference frame of the front, therefore weyhich |eads to a particular strongly oscillating turbulence-
have .added the.velocny increagdJ/U; directly into the i quced solution to Eq18) in the form
equation. Choosing another reference frame we would have
AU/U; included in the first time derivative of the front po-
sition. In fact, to derive an equation like E@.6) is a difficult f=2 ficogkix+gp)codkiUyt+ e+ Ae). (22
task by itself, which has not been fulfilled yet. So far such an
equation has been obtained only in some limiting casediere Ag; is the phase shift in time with respect to the ve-
given as follows. locity oscillations(21).
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In general, both the DL instability and the turbulence con-front z=g,(x) curved because of the DL instability only
tribute to the solution to Eq16). However, as was shown in with the velocity of flame propagation

Refs.[3,11,15,19, the instability working alone leads to a

stationary(or quasistationanysolution, while the turbulence- AU - AU

induced solution is strongly oscillating. Therefore, it would U, =(N1(90,90))= o, (29
be reasonable to look for a solution to Ef6) in the form of h=0 dl

superposition of a stationary part and a strongly oscillatinthen h£0. then the terms(Nl(h h) +<Nz(u h))
! ’ T Z1 T

t: N
Par +(N3(u,,u,)), affect the solution to Eq(25) and we have
f=g(x)+h(x,t). (23 the velocity increase
- - - . AU . R R .
Substituting Eq(23) into Eq. (16) we find U—=<N1(9-9)>+<N1(h,h)>+(J\/z(uz,h)>+(/\/3(uz,uz)>,
f

. . AU | R R R (30)
Lg+Lh+ 15~ = Ni(9,9) —Ny(g,h) = Ni(h,g) = Ni(h,h)
f where g may be different fromg,. We are interested
_r _R _A — 7 in the case wherg andh are of the same order of magni-
Aoz, Q) = NolUz 1) = Nz Up) = L1l 24 tude, and the flame is weakly wrinkled, that is

We separate the stationary and oscillating terms in(Bq.  AU/U;<1, (Ny(g,9))<1, (Ni(hh))<1, (A5(u,,h))

by taking time averaged, - -),, <1, (N3(uy,u))<1. Then the terms (Ni(h,h)).
+(N5(uy,h)),+(N3(u,,u,)), induce a particular solution
L A A to Eq. (25)
£g+ U_f_Nl(gig)_<Nl(h!h)>7'_<N2(uZ!h)>r a. !
(AU~ 0 25 ‘Cgp:<N1fhlh)>7_<N1(h’\!h)>+<N2(u21h)>7_<N2(uzih)>
+<N3(UZ,UZ)>T_<N3(UZ,UZ)>, (31)

and subtracting Eq25) from Eq. (24),
. R . A R which leads to negligibly small terms of the third order and
Lh—N1(g,h)—=Ni(h,g) = Ni(h,h)+(Ny(h,h)) . higher, when substituted into the operafdi(g,g). In that

A N N N case the solution to Eq25) takes the forng=gy+ g, with
—Na(Uz,9) = No(Ug, ) +(No(Uz ) = Na(uz, Up) the velocity increase o
+<./V3(UZ,UZ)>T= Z"tuz- (26)

AU | R .
, , _ U_:<N1(90ago)>+<N1(h,h)>+<N2(Uz,h)>
In the case of weak nonlinearity we can neglect the nonlinear f

terms in EQ.(26), which leads to the linear equatidi8)

written for the valueh and specifies the turbulence-induced +{Ns(uz,up)), (32
solution that is,
h=L"1Lu,. (27) AU [AU AU
T R v 33
If for some reason the DL instability does not develgp, f i Fr

=0, then the flame velocity in E425) increases because of

the turbulence-induced solution only: The above reasoning is supported by the results of the non-

linear models[11,15 in the limit of a weakly wrinkled

AU flame,AU/U¢<1.
(_) =(Ny(h,h)) + (Na(u,,h))+ (Ns(u,,u,)) Comparing Eqgs(14) and(33) we can see that the factor
Ut g=0 C; may be evaluated by the respective coefficient found for
the turbulence-induced solution. The turbulence-induced so-
AU ; . y . S
= _) , (28) lution has been obtained recently “from the first principles
Us ), for the case of an infinitely thin flame froh27]:
where (- --) stands for complete averaging. In general, in 1603
order to find the velocity increase we have to solve the ei- C (34

2 2 21"
genvalue problem(25) with the function (N7(h,h)). (O+1)[407+(07+1)7]
+(Ny(uy,h)),+(Ns(u,,u,)), determined by the external In the artificial limit of zero thermal expansidd= 1 we find
turbulence. The eigenvalue problem is similar to the problenC,=1 from Eg. (34). In the domain of realistically large
of the velocity increase for curved stationary flames; see Eghermal expansion the coefficie@; decreases witl®, and
(19 and Ref.[19]. In the absence of turbulence, whap  for ® =5-8, typical for methane or propane flames the for-
=0, h=0, Eqg.(25) describes the shape of a stationary flamemula, Eq.(34) gives C;=0.25-0.45. It is curious that the
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velocity increase provided by the turbulence-induced soludifferential equation with coefficients depending on the vari-
tion is smaller for larger thermal expansion, which is oppo-able, Eq.(36), which may be solved analytically by a stan-
site to the qualitative properties of the DL instability. It is dard method. Still the solution to Eq36) takes different
well known that larger thermal expansion leads to strongeforms for different values of the problem paramet&s
DL instability with larger velocity of flame propagation Kgax, ki, K, K,,, andU,,s/Us. Not all of these parameters
[3,19]. Different flame behavior in these two cases may bemay be varied independently in a combustion experiment.
explained in the following way. The DL instability develops Particularly, the geometry of the burning chamber usually
because of the flame interaction with the flow, and the largedetermines the integral turbulent length scale the maxi-
is the expansion facto®, the stronger is the interaction mal hydrodynamic length scalk.,y, and the respective
leading to stronger instability. On the contrary, when wewave numbers,=2m/L;, Knax= 27/ X max With Kpna, =K -
study the turbulence-induced solution, then the same interad-he integral length scale may be equal to the maximal length
tion plays the role of inertia. In that case the flame-flowscale when turbulence is produced directly by the walls of
interaction generates potential modes in the fuel mixture anthe burning chamber. On the contrary, the integral length
in the burnt matter at the expense of the turbulent energy, anstale is smaller than the maximal length scale when the flow
reduces the effect of turbulence on the flame front. Since thinvolves a special contraptiofgrid, fans, etd. intended to
flame-flow interaction is stronger at largér, the result of break large scale eddies into smaller ones. An example of
the turbulence-induced solution becomes weaker at largesuch a flow may be found in Rdf34]. Parameters of the fuel
thermal expansion in agreement with E§4). To illustrate  mixture specify the planar flame velocity and thickneds,
the above tendency we would also like to mention that staandL;, as well as the DL cutoff wave numbtggocl_;l and
bilization of the DL instability by acoustic waves increasesthe fractal exces®. On the contrary, the Kolmogorov cutoff
strongly the amplitude of the turbulence-induced solutionyave numberk, depends on the turbulent intensity via the
[28]. The resonance of the turbulence-induced harmonic withyrbulent Reynolds numbekV/kt=Re3’4, where the Rey-
the wavelength equal to the cutoff wavelength of the DLnolds number is defined as R&J, L. /v, andv is the ki-
instability, A =\, obtained in Ref[25] is another manifes- nematic viscosity30]. Taking into account the relation be-
tation of the same tendency. tween the planar flame parametétsl ;= v,,= v/Pr, where
Still, the model analysi$11,15 shows that finite flame ,,, is thermal diffusivity and Pr is the Prandtl number, we
thickness may increase the coeffici€tnoticeably in com- may present the Reynolds number in the form Re
parison with Eq.34). One more effect, which has not been =(UmsL)/(PrU¢Ls). Then the Kolmogorov cutoff wave
taken into account in reasonittg3)—(33), is fast propagation number may be evaluated as
of a flame front along the vortex axis. This is a nonlinear
effect related to nonzero thermal expansfa#], which also Upmely | ¥
contributes to the flame velocity increase in an external tur- k,= t( PrUfo)
bulent flow. Thus, since the theory of weakly curved turbu-

lent flames is not completed yet, in what follows it would be For fixed parameters of the burning chamber and the fuel

(37

reasonable to tred, as a factor of order of unity. mixture we get smaller Kolmogorov cutoff wave number for
smaller turbulent intensity. Stik, cannot be smaller thaky
V. THE EXTERNAL TURBULENCE AND THE DL since turbulence decays for R4. Below, we will consider
INSTABILITY WORK TOGETHER FOR STRONGLY the case of very large turbulent length scalexk., k;
CORRUGATED FLAMES <k, and different relations between the DL cutkffand the
Kolmogorov cutoffk, , which depends on the turbulent in-

Taking into account the velocity increase for a weakly
wrinkled flame, Eqs(14) and(15), and assuming self-similar
properties of a flame front at different length scales we can
find the velocity of a strongly corrugated flame influenced A k,<kg
both by the external turbulence and the DL instability. Onthe  First, we consider intermediate wave numbleys-k>k,

basis of Eqs(8) and(12) the velocity increase produced by =Kmax. Solution to Eq.(36) may be written as
one narrow band in the turbulent spectrum may be written as

u?=C (—
k 1
q( )dk (35 K
U2

tensity.

-2D K,
+2Ctk72Df 7*Pei(m)dy,  (39)
k

dU/U = —e4(k)dk—C,

where the integration constant (31=Uf2, since at short
or wavelengthsk>k.>k, the DL instability is suppressed by
thermal conduction, there is no external turbulence, and we
haveU=U; at k=k.. Keeping in mind the expression for
the spectral density(k) of the Kolmogorov turbulent ki-
netic energy and assuming a broad turbulent spectrum with
where the termey =D/k for kn,.x<k<K. is related to the L>\.we find different solution$38) for different values of
DL instability and e, is the spectrum of turbulent energy, the fractal exces® <1/3, D=1/3, andD>1/3. WhenD
which is nonzero fok,<k<k,. Thus we come to a linear #1/3, then solutior(38) is

| a

(U?)=—ea(k)U?=Cie(k), (36)

N -
o

k
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~2b 2cV7 For the whole spectrum of flame wrinkles we find the veloc-
U2:U2 5 + t~rms t fﬂ t
fl ke 3D—1 ity of flame propagation,
k| 272 K| 2 k|02 Amas| 22 4
. 1‘(!@) P T Ua=UH )+ 3CUsin(LiL). @)

Below, we takek<<k,, which is the most interesting in prac-
tice. Then in the case of small fractal excd3s<1/3 we
obtain from Eq.(39)

When turbulent intensity is zeld,,s= 0, then Eq(47) goes
over to the velocity increase produced by the DL instability
only, Eq.(10). Using the relation between the turbulent and
K1-20  oC K\ 23 Kolmogorov length scales, /L ,= Re’* we may also present
2112 t 2 i
U —Uf<—> + U (_) (40) Eq. (47) in the form

ke 1-3D ~"™s\ k,
Y 2/3
or Uv2v=Uf2()\L:X +C;In(Re)UZ .. (48)
, o K\ 2c
Us=Us|+— + Urms (41 . . Lo .
k¢ 1-3D Comparing the second terms in the velocity increase in Egs.

. ) ) s . (9) and(48) (the terms related to the external turbulenae
sinceur,s= U, o(k/k) ~ =%, Takingk=Kpa<k; We come to  can see that the turbulent term in E48) is multiplied by a
the formula for the turbulent flame velocity produced by thejarge factor InRe-1, which makes the effect of external

whole spectrum of wrinkles: turbulence much stronger in the presence of the strong DL
\ D oc instability.
u2=u? m""x) U2, (42
e 1-3D B. k, >k,

The above result obviously reproduces the Pocheau formula The case ok, >k is more typical for combustion experi-
(9) in the limit of no thermal expansio® =1 with no influ-  ments than the opposite situati&p<k. studied in the pre-
ence of the DL instability whe® =0 andC;=1. When® is  ceding section. In the case &f>k. we have to consider
large and the DL instability influences flame dynamics, therseparately two domains of large and small wave numbers
the velocity of flame propagation, E@l2), is larger than Eq.  (short and long wavelengthsk.<k<k, andk,<k<Kk., re-
(9) for two reasons: the first term on the right-hand sidespectively. When the wave numbers of flame wrinkles are
increases by the fractal-related factor,(,/\.)°° and the larger than the DL cutoffs.<k<k,, then one should expect
second term increases by the factor—3D) !, which  from Eq. (35) that the velocity of flame propagation in-
comes due to the coupling of the instability and the externatreases because of the external turbulence only. However, it
turbulence. has been shown in Reffl11,15,25 that flame response to

In the case of large fractal excelBs>1/3 solution(39) is  external turbulence is quite different for large and small

wave numbers. In the case of a wave number larger than the
k —2D 2Ct k —-2D+2/3
UZ=Uf| 2
C

DL cutoff, k>k. (small length scalgsthermal conduction
k_y suppresses strongly all wrinkles at the flame front, and the
assumption of a self-similar flame behavior breaks down.
for an intermediate wave numbky>k>k; and This conclusion is also supported by the experiments
[25,31-33. Particularly, according to Ref.32], the inner
cutoff wavelength in the spectrum of flame wrinkles is al-
most independent of turbulent intensity expressed by use of
the Karlovitz number in a rather large domain €Ka
for the whole spectrum of flame wrinkles. <10. Instead, the inner cutoff wavelength is equal approxi-
The parameter valuB=1/3 is special for Eq(38) with  mately (10—40) ; for different fuel mixtures, which is well
the Kolmogorov spectrum of external turbuleneg(k)  correlated with the typical cutoff wavelength of the DL in-
«k %3 At the same timeD=1/3 is the most interesting stability \ .= (20— 50)L; [1—3,24,25. Because of the strong
from the point of view of the experimental resul&6]. Tak-  thermal suppression, the harmonics of external turbulence
ing D=1/3 we obtain from Eq(38) that with large wave numberk>k. (small wavelengthn <\.)
wrinkle the flame front only slightly and produce almost no
In(k,/k), (45) increase in the flame velocity (k.)~U;. Of course, such a
v conclusion holds only for moderate turbulent intensity. In-
creasing the turbulent intensity we may produce strong wrin-
or kling of the flame front even at large wave numbkrsk_,
but in that case turbulence works against thermal conduction
2 modifying the inner structure of the flame front. However,
3 CiltimsInCk, k). “6) Whenf){[heginner flame structure is modified, we go over from

+ 3D—_1urmS (43)

2D ZCI 2D-2/3

2 |t
+3D—1U”“S(LV

kmax

Ae

(44)

UVZV=U$(

—2/3 —2/3

U2=U$(— + §ctu$‘mS(Et

Ke
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the flamelet regime of turbulent burning to the regime of
thickened flames, which is beyond the scope of the presen
paper.

For small wave numberg,<k<k. (large wavelengths
L,>A>\.) the solution to Eq(36) is

-2D

U,/ Uy’

u?=c,

kC
= + ZCtk*ZDf 7Pe(n)dn, (49
ke .

where the integration constant &,=U?(k.))~U?, since
the velocity of flame propagation &=k, is approximately

. . 0 1 2 3 4 5 6
equal to the planar flame velocity. Then we may write the )
solution, Eq.(49) similar to that in Sec. IV A replacing, by (Upns/ Uy)
k.. Particularly, the counterparts of formul&9), (42), (44), ]
and (47) are FIG. 1. Scaled flame velocity squar®(/U)? vs the scaled
turbulent velocity squareU,,s/U¢)? for different ratios\ max/A¢
op ) =10, 50, and 10@solid lineg, L;=X\ ax, andD=1/3. The dashed
U2=U2 k +2CtUrms and dash-dotted lines show the results by Pochged] and
"M ke 3D—-1 Yakhot[13], respectively.

ke 2371 k) T k| 2P DL instability working alone without external turbulence. We
X|1— k— — ? -1 (50)

K¢ can see in Fig. 1 that the instability is stronger at larger
hydrodynamic length scale allowed by the flow geometry.
for D#1/3, When turbulent intensity is nonzero, we have an increase in
the flame velocityJ,, with U,,s; and the larger the integral
()\max) 2D+ 2C, turbulent length scale, the stronger the increase of the flame

14

UZs (51)  velocity. This additional dependence of the flame propaga-
tion velocity on the turbulent length scale results from the
for D<1/3, k>k,, coupling of the DL instability and the external turbulence
obtained in the present paper. For comparison, Fig. 1 shows
also the turbulent flame velocity predicted by the formulas
(52) derived by Pocheau [14], dashed Iline, and
Yakhot[13], dashed-dotted line. Both papéiis3,14 devel-
oped the renormalization ideas of flame dynamics for the
case of zero thermal expansion wh@r=1 and there is no
DL instability. The original papef13] started the approach
) of scale-invariant flame behavior, but the pap&4] cor-
3 CtUmmdn(Li/Ac) (53 rected an inconsistency in the analysis of H&B], which
led to another formula for the velocity of flame propagation.
for D=1/3. As we can see, the velocity of flame propagation is much
smaller in the case o® =1 [14] when the DL instability
does not influence flame dynamics. The results of the present
paper and Ref.14] come closer for small values of the maxi-
The most illustrative way to present the formulas, Eqs.mal hydrodynamic length scale. Still, it is incorrect to think
(51)—(59), in a figure is to plot square of the flame velocity that the results of the present paper go over to the results of
versus square of the turbulent velocity. In that case we havRef. [14] when the hydrodynamic length scale gets smaller.
a family of straight lines depending on the problem paramdnstead, if the hydrodynamic length scale tends to the cutoff
eters. For example, Fig. 1 illustrates the dependence of thewavelength of the DL instability) ,,.x— N (taking into ac-
flame propagation velocity on the turbulent intensity for dif- count\ ,,,,=L,), then according to Eq53) the velocity of
ferent values of the integral turbulent length scrlg,/A.  flame propagation tends to the planar flame velocity,
=10, 50, and 100. To be particular, in Fig. 1 we have chosefJ,,— U;. The rigorous transition from the present theory to
L=\ naxand the fractal excess of the unstable laminar flamehe theory of Ref[14] happens in the limit of small thermal
front D =1/3 similar to the experimental resuli5,6]. As we  expansion whef® — 1 and, consequentli) — 0. In order to
can see in the figure, the larger are the maximal hydrodyinvestigate such transition, in Fig. 2 we present the velocity
namic length scale and the turbulent length scale, the largasf flame propagation versus turbulent intensity for different
is the velocity of flame propagation. An important point of values ofD=1/6, 1/3, and 1/2. Whe =0, the present
all plots is that when turbulent intensity is zekd,,,s=0, the  theory coincides with the theory of RéfL4]. We have taken
velocity of flame propagationt),,, is still different from the A ,,ax/A\c=20 andL;=\,ax In the figure. As we can see in
planar flame velocityJ; . This effect happens because of the Fig. 2, the larger the fractal exce8s provided by the DL

U22U2 )\max 2D+ 2Ct U2 5 2D—-2/3
W NG 3D—1 "M\ N,
for D>1/3, k;>k;, and

2/3 4
+ —

)\max

Ae

U5V=u$(

VI. RESULTS AND DISCUSSION
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U,/ Ug

(Ums/ Up’ U,/ Us

FIG. 2. Scaled flame velocity quuarej_\L/Uf)z vs the scaled FIG. 3. Scaled flame velocity vs scaled turbulent velocity for
turbulent velocity squareUns/Uy)" for different fractal excess gifferent ratiosh /A .= 10—1G (solid lines with L, =X,y The

D=1/6, 1/3, and 1/Zsolid lineg, Amax/Ac=20, andL=Amax-  dashed and dash-dotted lines show the results by Po¢héghand
The dashed and dash-dotted lines show the results by PoEb#lau  yakhot [13] respectively. The markers show the experimental re-
and Yakhot[13], respectively. sults[4,8,13.

instability, the larger the velocity of flame propagation. Formiddle of the cloud of the experimental points. Such agree-
small values of the fractal excess the plots do tend to thenent by order of magnitude is encouraging; still, it is diffi-
Pocheau result, and this tendency is independent of the inteult to use the resulfgt] for more detailed quantitative com-
gral turbulent length scale. parison of the theory and the experiments. Different
It is also interesting to compare the present results to thgeometries of the experiments included in Refl. demand
experiments on turbulent flames. In that sense, the mosiifferent theoretical interpretation, and analyzing all of them
popular experimental publication is a reviewlike papé}, requires plenty of work and another reviewlike paper such as
where a large number of previous experimental results fronj4]. Besides, the majority of the experiments included in Ref.
36 papers totally have been collected together with the re4] have been performed long ago, and the parameters of the
sults obtained by the authors of Ré#]. The results pre- turbulent flows such as the integral length scale or even the
sented in Ref[4] have been obtained in different geometriesturbulent intensity involved in the experiments have been
of burning with the characteristic hydrodynamic length often guessed, but not measured.
scales ranging from several centimeters up to 30 cm of the Instead we will concentrate on one recent experimental
burning chamber used by the authors of Rdif, and even paper[34]. The advantage of the experimen8#| for the
larger. Let us estimate the characteristic values of the ratipresent comparison is that they have been performed with
Mmax/N¢ involved in such experiments. Taking the typical well-developed turbulent flames propagating in a statistically
velocity of experimental flames in the range d&J;  stationary regime in a tube with a rectangular cross section.
=(20-200) cm/s, we obtain the flame thicknéss=v/U¢ The cross-section parameters werg @5 cnt with the di-
=10"3-102) cm. According to the linear theory of the DL agonal 9.7 cm controlling 1/2 of the maximal possible wave-
instability [1-3,24,29, the typical value of the cutoff wave- length of the DL instability\ .. At the same time, accord-
length is abouh .=50L¢, that is,\.=0.05-0.5 cm, which  ing to Ref.[34], the integral turbulent length scale was much
specifies the characteristic domain for the rakig. /A,  lower,L=0.5 cm, so that one has to be careful when apply-
=10-1G. Figure 3 compares the present theoretical resulting formulas of the present paper to the experimental condi-
to the experimental resultisgt]. The theoretical curves are tions of Ref.[34]. The experiment34] has been performed
plotted according to Eq(53) for D=1/3, Amax/A\c=10  for propane flames with equivalence rati¢s-0.75, 1, and
—10%, andL,=\pax. As we can deduce immediately from 1.25. Taking the planar flame velocity and thermal diffusivity
Fig. 3, the experimental results do not fall into one curve, buty,, for propane flames from Ref35] we calculate the re-
look more like a cloud. Therefore, numerous attempts to despective flame thicknessL;=r,,/U;=8X10"3, 4.9
scribe such a “cloud” by one simple formula such as x10 3, 5.6<x10 3 cm. The cutoff wavelength of the DL
U,/Ui=f(U,ns/Us), see Ref.[1] as a review, were instability for the propane flames may be evaluated as
doomed from the very beginning. Even the Pocheau formula)./L;~60, see Ref[36], and we find\.~0.48, 0.29, and
Eqg. (9), which is probably the most mathematically rigorous 0.34 cm for¢p=0.75, 1, and 1.25, respectively. Adopting the
of the attempts, goes well below the cloud of experimentaturbulent length scalé.,~0.5 cm in agreement with Ref.
points. On the contrary, the present analysis includes addj34] we can see that the effect of turbulence should be weak
tional parameters in the dependence of the flame propagatidor all equivalence ratios considered, since the parameter
velocity on the turbulent intensity. For this reason, instead oL, /\ is close to unity in all three cases/\.=1.04, 1.7,
one curve we have a family of curves for different ratiosand 1.5. On the contrary, the characteristic hydrodynamic
Amax/A¢=10-1C. As we can see in Fig. 3, for the chosen length scale\ .,y is rather large) nax/A.=40.4, 84.2, and
parameter domain the theoretical curves pass through th&7.7, and we should expect a noticeable DL instability. Fig-
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U,/ U;

Us / U

FIG. 4. Scaled flame velocity,,/U; vs scaled turbulent veloc-
ity U,ms/U; for the experimental configuratidi34] with different
equivalence ratiop=0.75, 1, and 1.2%solid lineg. The markers
show the experimental results fér=0.75(crossel ¢ =1 (circles,
and ¢=1.25 (triangles [34].

ure 4 compares the theoretical formula, Es5g), to the ex-
perimental result§34] presented by crossesp&0.75),
circles (¢=1), and triangles ¢=1.25). As we can see in

PHYSICAL REVIEW E568, 066304 (2003

slip at the walls resulted in additional curvature of the flame
front, which the authors of Ref34] tried to eliminate by
phenomenological correction factors to the velocity of flame
propagation. The uncertainty in the correction factors may be
the other reason for the poor quantitative agreement between
the theory and the experiment fgr=0.75. Before the cor-
rections were performed, the experimental pojB3#] corre-
sponding to different equivalence ratigs=0.75, 1, and 1.25
were correlated much better. Unfortunately, to the best of our
knowledge, so far there has been no theoretical investigation
of the DL instability with viscous conditions of no slip at the
walls. Therefore at present it is impossible to compare the
theory and the experimental poii#] directly as they have
been measured without the phenomenological corrections.
Finally, if the integral turbulent length scale was indeed as
small as it was stated in RéB4], that is,L;~0.5 cm, then in

the case oth=0.75 we have an interesting situation whgn

is approximately equal to the cutoff wavelength of the DL
instability L=\, . In that case the multiscaled approach pro-
posed in Ref[14] and used in the present paper may work
for the DL instability, but not for the turbulence-induced
terms. On the contrary, in that case finite thickness of the
flame front becomes of basic importance for the turbulence-
induced solution, since it leads to a resonande at\ . ; see

Fig. 4, in the cases ofp=1, 1.25, the theoretical curves Refs.[11,25. Because of the resonance the coefficiepof

agree rather well with the experimental results both qualitathe turbulence-induced solution may increase considerably,
tively and quantitatively. The quantitative difference is resulting in a much larger velocity of flame propagation, as is
within 15-25 %, which may be explained by the experimen-shown by the experimental points of Fig. 4.

tal errors and inevitable simplifications of the theory. The There is one more interesting point in the comparison of
important property of the experimental points is that for zerothe experimental and theoretical results which should be dis-
turbulent intensityU,,s=0, they tend to some velocity of cussed. The theoretical curves of Figs. 3 and 4 predict a
flame propagationtJ,,, exceeding the planar flame velocity rather large velocity of flame propagatidd,, /U, for zero

U; noticeably. This tendency is especially evident for theturbulence intensityJ,,,s/U;=0 when the DL instability
stoichiometric flamep=1, for which the velocity of flame works alone. The experimental points of Fig. 4, R&4],
propagation is almost independent of the turbulent intensitylemonstrate the same tendency. At the same time, the experi-
and equal toJ,,/U;=3.75—-4. In the case op=1.25 the mental points of Fig. 3, Ref4], obviously tend to unity for
velocity of flame propagation varies also rather weakly ex-—zero turbulent intensityJ,,/U¢—1 for U,,,s/U;—0. In or-
cept for one measured point at lower turbulent intensityder to understand this “contradiction” we have to take into
U,ms/Us=1.2. Still, even that point is not far from the the- account the details of the experiments of Réi. The theo-
oretical curve. The agreement between the theoretical anetical curves of Figs. 3 and 4 and the experimental points of
experimental results is not so good only for the equivalencéRef.[34] are plotted for a fixed hydrodynamic length scale of
ratio ¢=0.75, though even in that case we can observe théhe DL instability and a fixed integral length scale of the
same qualitative tendencies as &+ 1, 1.25. Particularly, if  turbulent flow. On the other hand, the original experiments of
we extrapolate the experimental points to the case of zerRef. [4] and most of the previous experiments compiled in
turbulent intensity, then the flame propagation velocitythat paper have been performed for developing flames. In
U,/U; will be considerably larger than unity, about that case flame propagates from a center of a burning cham-
U, /U;=4-5. However, unlike the theoretical curve f¢r  ber, and the turbulent intensity experienced by the flame
=0.75, the experimental points show noticeable increase dfont in a particular time instant depends on the length scale
the flame velocity for increasing turbulent intensity. A pos-\ characterizing flame dynamics at that instant. Following
sible explanation of the disagreement between the theory artie designations of the present paper, such an experiment
the experiment in the case @f=0.75 is that the integral provides the dependendg=U(N\,u;,s) With A=X\(U;mys)
turbulent length scale has not been, actually, measured imstead of the dependentk,=U (A max.Lt,Urms) given by
Ref.[34]. Instead, the authors referred to previous measurekg. (53) and plotted in Figs. 3 and 4. Then the points with
ments for “a nearly identical burner.” Still, the integral tur- small turbulent intensity correspond to small length scales
bulent length scale is one of the most important parameterat the beginning of flame propagation, which are much
in the present theory, and the uncertainty in the experimentamaller than the maximal integral length schleor the in-
value ofL; is crucial for the comparison of the theory and the stability length scale\ .4 allowed by the geometry of the
experiment. Besides, viscous effects influenced the experburning chamber. The DL instability is suppressed for these
mental results of Ref.34] considerably. The condition of no points by thermal conduction and finite flame thickness. As
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the flame radius grows, the characteristic length scale of the 16
flame dynamics\ increases and the DL instability develops 14 F
at the flame front. Besides, the flame interacts with turbulent :
vortices of a larger size, which implies stronger turbulent :
intensity. If the integral Reynolds number of the turbulent . 10 f
flow is sufficiently large, then we can present the dependenceZ 3
U=U(\,u;me as a function of the turbulent intensity only = :
using the Kolmogorov spectrum, = U, ms(A /L)Y or x E
=L(Urms/Ums)®. To be particular, we chose the most typi- 4t ‘
cal case ok;<k.<k, andD=1/3. Then, according to Eq. 2 B/ 4
(53), the instant velocity of flame propagation depends on
the local turbulent intensity as

0 1 2 3 4 5 6
w2 (L% 4 TE tms U
2 2 rms t 2 rms—t
U —Uf 2 ()\_ +§Cturm5|n 3 ( ) 3 i
rms Ve Urmshe FIG. 5. Scaled flame velocity/U; vs scaled local velocity of

external turbulenceu,,s/U; for a developing flame withg

=0.07-1.5(solid lineg. The markers show the experimental results
4] for B=0.7-1 (crossel B=1.6—1.9(triangles, and 3=3-4
ircles.

for A\>\.. BesidesU=U; for A<\, since the velocity of
flame propagation cannot be smaller than the planar flam
velocity U . It is interesting to note that both the turbulent
term and the term related to the DL instability in E&4) are _ _
formally proportional tou? .. Indeed, the outcome of the triangles for 0.045:Ka<0.060 (1.6<3<1.9), and circles
DL instability depends on the characteristic length sogle for 0.12<Ka<0.17 (3<p<4). The experimental points
which, in turn, is coupled to the turbulent intensity for a Present the velocity of flame propagation with respect to the
developing flame. It is convenient to rewrite the above for-fuél mixture, which is different from the flame velocity ob-

mula with the help of the parameter served in the laboratory reference frame. As we can see in
Fig. 5, the smaller the Karlovitz number and the parameter
U 13 B, the larger the velocity of flame propagation. Such a ten-
= fms(ﬁ (55) dency was pointed out in Rg#] on the basis of experimen-
Us | L tal studies and put in a phenomenological formula for the

velocity of flame propagation. The present theory explains

The introduced parameter compares the planar flame velocii#fis tendency from the first principles. Indeed, if the value of
Uy and the turbulent velocity at the length scale equal to thdhe Karlovitz numbecor the parameteg) is small, then the

DL cutoff wavelengthUms(A¢/L). The parametep is ~ Same turbulent intensity is achieved at larger length scales.
similar to the Karlovitz number, but it works better in the At the same time larger length scales lead to stronger DL
present studies. Besidgsjs unambiguously specified, while instability and stronger coupling between the instability and
the Karlovitz number involves the poorly defined Taylor mi- the external turbulence, expressed by the factors of the first
croscale, which requires extra assumptions and calculationdnd second terms in E€53). As a result, we have a larger
Following Ref.[4] we may relate the parametg to the  Velocity of flame propagation for smaller values of Kar
Karlovitz number as B=3.4&Ka?3(\./L)3, or p  B). Comparing the respective theoretical curves and the
—12.7Ka?3 in the case of\./L;=50 considered in Fig. 3. clusters of experimental points quantitatively, we can see that
Then Eq.(54) goes over to the theoretical results go somewhat below the experimental
points. However, we would like to remind the reader that the
experimental points of Ref4] have been collected from a
large number of papers involving different experimental con-
figurations. For this reason one cannot expect high accuracy
for \>\. andU=U; for N\<\.. Figure 5 presents the de- from the quantitative comparison, since different experimen-
pendence, Eq56), for the domain 0.0% 8<1.5. Aswe can tal configurations require different interpretations of the
see in Fig. 5, if we interpret the experimental results as théheory. Looking at the theoretical curves in Figs. 3 and 5 we
instant propagation velocity of a developing flame front, thencan see how large is the difference between these two theo-
the theoretical curves look quite different from Fig. 3: theyretical interpretations of the experimental results. Usually ex-
start at the planar flame velocity for zero turbulent intensity,periments involve a large number of extra effects, which
and then we have almost linear growth of the flame velocityhave not been included in the present theory. For example,
with turbulent intensity(which depends on the length scale the present theory does not take into account the effect of a
of flame dynamics Such a shape of the theoretical curvesclosed burning chamber used in the original experiments of
resembles qualitatively the look of clusters of the experimenRef.[4]. A closed burning chamber results in precompression
tal points selected in Ref4] according to the Karlovitz of the fresh fuel mixture, which increases turbulent intensity
number. In Fig. 5 we have shown different clusters by dif-and planar flame velocity and decreases flame thickness, thus
ferent markers: crosses for 0.048a<0.025 (0. K B<1), leading to a larger velocity of turbulent flame propagation.

U:urms[:B_2+4|n(urms/ﬁuf)]1/2 (56)
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Flame interaction with acoustic waves is another important VIl. SUMMARY
effect, which we should expect in a closed burning chamber.

As ha§ peen pqmted OUt. in Reff28,36,31, the flame- behavior of a strongly corrugated flame fr¢h4] to the case
acoustic interaction may influence the velocity of flame ¢ 5 flame influenced both by the external turbulence and by
propagation quite strongly damping the DL instability andhe p|_instability. The obtained analytical formulasith Eq.
increasing the effect of the turbulence—lndgced solgtlon. Th|§53) describing the most typical situatibdemonstrate rather
indicates that we should be very careful interpreting a Parstrong coupling between external forcing of the flame front
ticular experiment. For example, it has been questioned iy turbulence and intrinsic flame dynamics. The results ob-
Ref.[38] if the turbulent flames observed in the majority of tained refute the widely spread idea that the DL instability is
combustion experiments are statistically stationary, or theyf minor importance for the turbulent flames. Instead, the
present an intermediate asymptotic in the flame dynamicsieveloped theory demonstrates that the DL instability is of
Strictly speaking, the theoretical results of the present papasrincipal importance when the characteristic hydrodynamic
consider a statistically stationary turbulent flame, and comiength scale is large. The case of large hydrodynamic length
parison of the theory with experiments on developing flamescales is typical for the majority of combustion configura-
may be misleading. Finally, we would like to mention onetions corresponding to the flamelet regime of burning. The
more limitation of the present theory. In the present paper wé@btained analytical results agree well with experiments. Still,
have assumed indirectly that the flame is unstable with rein order to perform a careful quantitative comparison one has
spect to the DL instability only. An additional thermal- to take into account details of a particular experiment, since
diffusion instability (the Zeldovich instability [39,40 may  €ven in scope of the same theory we come to quite different
reduce the cutoff wavelengtt, down to the flame thickness formulas for the turbulent flame velocity for different experi-
and below instead of the large values=(20-50), typi-  mental flows, see, for example, EqS3) and(56).

cal for the DL instability. According to Eq53), small values

of the cutoff wavelength make the flame instability much
stronger, thus increasing the turbulent flame velocity. The
effect of noticeably faster propagation of a turbulent flame The author is grateful to Derek Bradley and Wacheslav
front affected by the thermal-diffusion Zeldovich instability Akkerman for useful discussions. This work was supported

We have developed the ideas of the self-similar multiscale
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