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Importance of the Darrieus-Landau instability for strongly corrugated turbulent flames
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The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case
of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is
corrugated both by the external turbulence and by the intrinsic flame instability~the Darrieus-Landau instabil-
ity!. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the
flame instability is of principal importance when the maximal hydrodynamic length scale is much larger than
the cutoff wavelength of the instability, provided the turbulent intensity is not too high.
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I. INTRODUCTION

The role of the hydrodynamic flame instability for pr
mixed turbulent burning in gas turbines and car engines
been widely discussed, but the final answer still remains
known @1–3#. For a long time it was supposed that the ins
bility influence is minor@1,4#. Now there is mounting evi-
dence that the flame instability is of primary importance
turbulent burning, and sometimes this effect may even do
nate@5–11#. For example, the experiments@5,6# demonstrate
that flame propagation velocityUw may increase by a facto
of 10 and larger in comparison with the planar flame veloc
U f because of the Darrieus-Landau~DL! instability only.
Such a velocity increase is comparable to the velocity
served for turbulent flames@4,12#. The experiments@8# with
turbulent flames at different pressures show that flames
the reduced instability effect propagate three to four tim
slower. Similar tendency may be understood using the
lowing order-of-magnitude reasoning. Turbulent burning
gas turbines and car engines happens typically in the flam
regime, for which a flame front may be strongly corrugat
on large length scales, but it retains the same internal st
ture as laminar flames@1#. Strictly speaking, the flamele
regime takes place when the planar flame velocityU f is
much larger than the characteristic velocity of turbulent p
sations,urms5urms(l), at the length scale equal to the flam
thickness,l5L f , that is,urms(L f)/U f!1. Thus, the effects
of turbulence are relatively small on small length scalesl
.L f by definition of the flamelet regime. On large leng
scales turbulent velocity increases according to the Kolm
orov lawurms(l)}l1/3, and it may become much larger tha
the planar flame velocityU f . However, according to the ex
periments@5,6# the DL instability leads to a fractal structur
of the flame front with the velocity of flame propagatio
increasing with length scale in the same way,Uw(l)}l1/3,
which implies urms(l)/Uw(l)}urms(L f)/U f!1 for all
length scales of the gas flow. Of course, the above reaso
is very qualitative, and one needs a more quantitative inv
tigation to understand the role of the DL instability in th
flamelet burning regime. Unfortunately, direct numeric
simulations cannot help in this case, since the character
length scale of the flow, 10–100 cm, exceeds the typ
flame thickness, 1024–1023 cm, by many orders of magni
tude. Renormalization analysis@13,14# may work better
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when such a large number of different length scales is
volved in the problem. The original papers@13,14# developed
the renormalization ideas in the artificial context of a flam
with zero thermal expansion when the densities of the f
mixture, r f , and the burnt gas,rb , are the same, i.e., th
expansion factorQ[r f /rb is equal to unity,Q51. How-
ever, the assumption ofQ51 is quite far from reality, in-
stead, laboratory and industrial combustion is accompan
by rather strong expansion of burning gaseous mixtureQ
55 –10. As a matter of fact, it is the density drop that cau
the DL instability, and the larger is the expansion factorQ,
the stronger is the instability@1,2#. The joint action of the DL
instability and the external turbulence has been investiga
in Refs.@11,15# on the basis of a model equation in the ca
of weakly wrinkled flames. It has been obtained in Re
@11,15# that the flame velocity increase produced by we
turbulence and weak DL instability working together
larger or about the sum of the turbulence effect and the
stability effect taken separately.

In the present paper we expand the renormalization id
of Ref. @14# to the case of a flame front strongly corrugat
both by the external turbulence and by the DL instabili
Assuming self-similar properties of the corrugated flame
namics, we find analytical formulas for the propagation v
locity of a strongly turbulent flame. We demonstrate that
DL instability is of principal importance when the maxim
hydrodynamic length scale is much larger than the cu
wavelength of the DL instability, provided the turbulent in
tensity is not too high.

II. STRONGLY CORRUGATED FLAMES PRODUCED
BY TURBULENCE ONLY

According to the well-known Clavin-Williams formula
@16# obtained in the case of no thermal expansionQ51 and
zero flame thickness, weak turbulence increases the velo
of a turbulent flame,DU5Uw2U f.0, as

DU/U f5Urms
2 /U f

2 , ~1!

whereUrms5urms(Lt) andLt is the integral length scale o
the turbulent flow. Equation~1! may be also presented wit
the help of spectral density« t(k) of the turbulent kinetic
energy
©2003 The American Physical Society04-1
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DU/U f5U f
22E

kt

kn
« t~k!dk, ~2!

where

urms
2 5E

k

kn
« t~h!dh, ~3!

Urms
2 5E

kt

kn
« t~k!dk, ~4!

kt52p/Lt and kn52p/Ln are the wave numbers corre
sponding to the integral and Kolmogorov~dissipation! length
scalesLt andLn , the former being usually much larger tha
the latterLt@Ln , kt!kn . In the case of the Kolmogorov
turbulent spectrum« t(k)}k25/3 we find from Eq.~3!,

« t~k!5
2

3
Urms

2 kt
2/3F12S kt

kn
D 2/3G21

k25/3'
2

3
Urms

2 kt
2/3k25/3.

~5!

Equation~1! has been extrapolated to the case of a stron
turbulent flame assuming self-similar properties of the cor
gated front @14#. Following Ref. @14# we decompose the
whole spectrum of flame wrinkles into components with d
ferent wave numbers~narrow bands in the spectrum!, each of
them providing a similar small increase of the flame fro
velocity. Then the first band with the largest possible wa
number and the smallest possible length scale increase
flame velocity asdU15Uw12U f ,

dU1 /U f52« t~k1!dk/U f
2 . ~6!

The minus sign comes into Eq.~6! because the integral in
Eq. ~3! is taken fromk to kn . From the point of view of the
second band with the wave numberk2 the valueUw1 plays
the role of the new flame velocity. Then the second ba
provides the flame velocity increase

dU2 /Uw152« t~k2!dk/Uw1
2 , ~7!

and so on. Let us designate the velocity of flame propaga
corresponding to the wrinkles with the wave numbers ab
k by U5U(k). Since every band in the spectrum of flam
wrinkles leads to infinitesimal increase in the flame veloc
we can write Eqs.~6! and ~7! in the form

dU/U52« t~k!dk/U2. ~8!

Integrating Eq.~8! over the whole turbulent spectrum on
obtains the propagation velocityUw of a strongly corrugated
flame with zero thermal expansionQ51 @14#,

Uw
2 5U f

212Urms
2 . ~9!

III. STRONGLY CORRUGATED FLAMES PRODUCED
BY THE DL INSTABILITY ONLY

Let us consider similar scale-invariant formulas for t
case of a flame front corrugated because of the DL instab
06630
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only, when there is no external turbulence. It has been
tained experimentally@5,6# that a spherical flame unstab
according to the DL mechanism accelerates because o
corrugated structure of the front. The acceleration impl
that the velocity of flame propagation,Uw , increases with
the maximal characteristic length scale of the hydrodyna
motion,lmax, as

Uw5U f~lmax/lc!
D, ~10!

wherelc is the cutoff wavelength of the DL instability pro
portional to the flame thickness andD is a constant power
exponent. The self-similar flame acceleration has been in
preted as development of a fractal structure at the flame f
with wrinkles of different wave numbers imposed on ea
other@5,6#. The theoretical studies of the stability properti
of curved flames@3,17,18# lead to similar conclusions. In
that case the cutoff wavelength of the DL instability,lc ,
plays the role of the inner cutoff in the fractal cascade andD
is the excess of the fractal dimension of the flame front o
the embedding dimension~the embedding dimension is 2 fo
the realistic experiments with three-dimensional flows!. Ac-
cording to the experimental measurements@5,6# the fractal
excess is approximatelyD'1/3 for all investigated labora
tory flames. The theoretical estimates@3,17,18# suggest that
the fractal excess depends on the expansion factorD
5D(Q) with D'1/3 for Q55 –8, typical for laboratory
flames andD→0 whenQ→1. Assuming self-similar prop-
erties of the fractal cascade we should expect that the
termediate’’ velocity of flame propagation,U5U(k), pro-
duced by the wrinkles with wave numbers in betweenk and
kc52p/lc depends onk as

U5U f~k/kc!
2D. ~11!

The last equation may be also presented in a differential fo
similar to Eq.~8!,

dU/U52«dl~k!dk, ~12!

with «dl5D/k for kmax,k,kc and «dl50 when k>kc .
Herekmax is the smallest possible wave number allowed
the flow geometry~corresponding to the largest possib
wavelength!.

IV. THE JOINT EFFECT OF TURBULENCE AND THE DL
INSTABILITY FOR A WEAKLY WRINKLED FLAME

When a flame front with realistically large thermal expa
sion Q55 –10 propagates in a turbulent flow, then both t
DL instability and the external turbulence contribute to t
velocity increase. In the present section we consider the j
effect of the turbulence and the instability for a weak
wrinkled flame. In general, the velocity increase depen
both on the scaled turbulent intensityUrms

2 /U f
2 and on the

intrinsic parameters of flame dynamics such asQ, the flow
geometry, etc.:

DU/U f5F~Urms
2 /U f

2 ,Q, . . . !. ~13!
4-2
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When turbulence is weakUrms
2 /U f

2!1, the last formula may
be reduced to

DU/U f'Cdl1CtUrms
2 /U f

2 , ~14!

with the factorsCdl and Ct depending on intrinsic flame
parameters. Obviously, the termCdl specifies the velocity
increase of a flame front due to the DL instability only, wh
turbulent intensity is zeroUrms

2 /U f
250,

~DU/U f !dl5Cdl . ~15!

This increase has been investigated in a large numbe
papers; see the analytical theory@19#, the direct numerical
simulations@18,20,21#, and the recent review@3#. The veloc-
ity increase results from the balance between the DL in
bility, the thermal stabilization, and the nonlinear geome
cal ~Huygens! stabilization. The effect of Huygen
stabilization is also similar to kinematic restoration of turb
lent flames described in Ref.@10#. In both cases corrugation
of the front~produced either by instability or by turbulenc!
are ‘‘removed’’ by local flame propagation. As a matter
fact, both Huygens stabilization and kinematic restorat
are produced by the same term of nonlinear equations
scribing flame dynamics. For example, within the scope
the approach of Ref.@10#, the stabilization/restoration is re
lated to the first term on the right-hand side of Eq.~7! of Ref.
@10#.

At present there is not so much information about
second factorCt of Eq. ~14!. Comparing Eq.~14! and the
Clavin-Williams formula, Eq.~1!, we can say for sure tha
Ct51 for Q51 ~we also haveCdl50 in the same limit of
Q51). According to the model studies@11,15#, the factorCt
may be evaluated from below by the respective coefficien
the turbulence-induced solution of the flame equatio
which is not influenced by the DL instability directly. Th
main idea of the turbulence-induced solution may be
plained in the following way. Suppose that dynamics o
weakly wrinkled flame frontz5 f (x,t)2Uwt in an external
turbulent flowuz may be described by an equation

L̂f 1
DU

U f
2N̂1~ f , f !2N̂2~uz , f !2N̂3~uz ,uz!5L̂tuz ,

~16!

whereL̂, L̂t are linear operators andN̂1 , N̂2 , N̂3 are non-
linear operators of the second order. For example, the e
of kinematic restoration of a weakly wrinkled front orig
nates from a nonlinear operatorN̂( f , f )}“ f •“ f 5(“ f )2.
We are interested in the dynamics of a statistically station
flame front in the reference frame of the front, therefore
have added the velocity increaseDU/U f directly into the
equation. Choosing another reference frame we would h
DU/U f included in the first time derivative of the front po
sition. In fact, to derive an equation like Eq.~16! is a difficult
task by itself, which has not been fulfilled yet. So far such
equation has been obtained only in some limiting cas
given as follows.
06630
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~1! In the artificial case of zero thermal expansionQ
51, Eq.~16! coincides with theG equation proposed in Ref
@22# and written for a weakly wrinkled flame.

~2! When thermal expansion is nonzero but ultimate
weak,Q21!1, and turbulence is zero, then Eq.~16! goes
over to the Sivashinsky equation@23#. Turbulence may be
included into the Sivashinsky equation similar to Ref.@9#.

~3! In the linear case of small amplitude of flam
wrinkles, Eq.~16! reproduces the dispersion relation of th
DL instability @24# and linear response of a flame front
external turbulence@25#. In that case Eq.~16! takes the form

L̂f 50 ~17!

and

L̂f 5L̂tuz , ~18!

respectively. The theories@24,25# have been developed fo
realistically large thermal expansion of burning matter.

~4! For curved stationary flames with realistically larg
thermal expansion, Eq.~16! reproduces the nonlinear equ
tion derived in Ref.@19#. In that case Eq.~16! is

L̂f 1
DU

U f
2N̂1~ f , f !50. ~19!

~5! An attempt to derive a similar nonstationary nonline
equation led to a rather cumbersome result@17#; therefore,
subsequent studies of weakly turbulent flames subject to
DL instability @11,15# have been performed on the basis o
model equation@26#, which is not rigorous but has a rela
tively simple form.

Still, in the present paper a particular form of Eq.~16! is
not important. What is important is that Eq.~16! describes a
weakly wrinkled turbulent flame and takes into account
DL instability. The turbulent velocity in Eq.~16! may be
specified as a combination of Fourier harmonics with ra
dom phases similar to Ref.@9#. For example, in the case of
two-dimensional incompressible ‘‘stationary’’ flow consid
ered in Ref.@9# the turbulent velocityuz may be presented in
the laboratory reference frame as

uz5( Ui cos~kix1w ix!cos~kiz1w iz!, ~20!

where the amplitudesUi obey the Kolmogorov spectrum. In
the reference frame of the propagating flame front the tur
lent velocityuz is strongly oscillating,

uz5( Ui cos~kix1w ix!cos~kiUwt1w iz!, ~21!

which leads to a particular strongly oscillating turbulenc
induced solution to Eq.~18! in the form

f 5( f icos~kix1w ix!cos~kiUwt1w iz1Dw i !. ~22!

Here Dw i is the phase shift in time with respect to the v
locity oscillations~21!.
4-3
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In general, both the DL instability and the turbulence co
tribute to the solution to Eq.~16!. However, as was shown i
Refs. @3,11,15,19#, the instability working alone leads to
stationary~or quasistationary! solution, while the turbulence
induced solution is strongly oscillating. Therefore, it wou
be reasonable to look for a solution to Eq.~16! in the form of
superposition of a stationary part and a strongly oscillat
part:

f 5g~x!1h~x,t !. ~23!

Substituting Eq.~23! into Eq. ~16! we find

L̂g1L̂h1
DU

U f
2N̂1~g,g!2N̂1~g,h!2N̂1~h,g!2N̂1~h,h!

2N̂2~uz ,g!2N̂2~uz ,h!2N̂3~uz ,uz!5L̂tuz . ~24!

We separate the stationary and oscillating terms in Eq.~24!
by taking time average,̂•••&t ,

L̂g1
DU

U f
2N̂1~g,g!2^N̂1~h,h!&t2^N̂2~uz ,h!&t

2^N̂3~uz ,uz!&t50 ~25!

and subtracting Eq.~25! from Eq. ~24!,

L̂h2N̂1~g,h!2N̂1~h,g!2N̂1~h,h!1^N̂1~h,h!&t

2N̂2~uz ,g!2N̂2~uz ,h!1^N̂2~uz ,h!&t2N̂3~uz ,uz!

1^N̂3~uz ,uz!&t5L̂tuz . ~26!

In the case of weak nonlinearity we can neglect the nonlin
terms in Eq.~26!, which leads to the linear equation~18!
written for the valueh and specifies the turbulence-induc
solution

h5L̂21L̂tuz . ~27!

If for some reason the DL instability does not develop,g
50, then the flame velocity in Eq.~25! increases because o
the turbulence-induced solution only:

S DU

U f
D

g50

5^N̂1~h,h!&1^N̂2~uz ,h!&1^N̂3~uz ,uz!&

[S DU

U f
D

t

, ~28!

where ^•••& stands for complete averaging. In general,
order to find the velocity increase we have to solve the
genvalue problem~25! with the function ^N̂1(h,h)&t

1^N̂2(uz ,h)&t1^N̂3(uz ,uz)&t determined by the externa
turbulence. The eigenvalue problem is similar to the probl
of the velocity increase for curved stationary flames; see
~19! and Ref.@19#. In the absence of turbulence, whenuz
50, h50, Eq.~25! describes the shape of a stationary fla
06630
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front z5g0(x) curved because of the DL instability onl
with the velocity of flame propagation

S DU

U f
D

h50

5^N̂1~g0 ,g0!&[S DU

U f
D

dl

, ~29!

When hÞ0, then the terms^N̂1(h,h)&t1^N̂2(uz ,h)&t

1^N̂3(uz ,uz)&t affect the solution to Eq.~25! and we have
the velocity increase

DU

U f
5^N̂1~g,g!&1^N̂1~h,h!&1^N̂2~uz ,h!&1^N̂3~uz ,uz!&,

~30!

where g may be different fromg0. We are interested
in the case whereg and h are of the same order of magn
tude, and the flame is weakly wrinkled, that
DU/U f!1, ^N̂1(g,g)&!1, ^N̂1(h,h)&!1, ^N̂2(uz ,h)&
!1, ^N̂3(uz ,uz)&!1. Then the terms ^N̂1(h,h)&t

1^N̂2(uz ,h)&t1^N̂3(uz ,uz)&t induce a particular solution
to Eq. ~25!,

L̂gp5^N̂1~h,h!&t2^N̂1~h,h!&1^N̂2~uz ,h!&t2^N̂2~uz ,h!&

1^N̂3~uz ,uz!&t2^N̂3~uz ,uz!&, ~31!

which leads to negligibly small terms of the third order a
higher, when substituted into the operatorN̂1(g,g). In that
case the solution to Eq.~25! takes the formg5g01gp with
the velocity increase

DU

U f
5^N̂1~g0 ,g0!&1^N̂1~h,h!&1^N̂2~uz ,h!&

1^N̂3~uz ,uz!&, ~32!

that is,

DU

U f
5S DU

U f
D

dl

1S DU

U f
D

t

. ~33!

The above reasoning is supported by the results of the n
linear models@11,15# in the limit of a weakly wrinkled
flame,DU/U f!1.

Comparing Eqs.~14! and ~33! we can see that the facto
Ct may be evaluated by the respective coefficient found
the turbulence-induced solution. The turbulence-induced
lution has been obtained recently ‘‘from the first principle
for the case of an infinitely thin flame front@27#:

Ct5
16Q3

~Q11!@4Q21~Q211!2#
. ~34!

In the artificial limit of zero thermal expansionQ51 we find
Ct51 from Eq. ~34!. In the domain of realistically large
thermal expansion the coefficientCt decreases withQ, and
for Q55 –8, typical for methane or propane flames the f
mula, Eq.~34! gives Ct50.25–0.45. It is curious that the
4-4
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velocity increase provided by the turbulence-induced so
tion is smaller for larger thermal expansion, which is opp
site to the qualitative properties of the DL instability. It
well known that larger thermal expansion leads to stron
DL instability with larger velocity of flame propagatio
@3,19#. Different flame behavior in these two cases may
explained in the following way. The DL instability develop
because of the flame interaction with the flow, and the lar
is the expansion factorQ, the stronger is the interactio
leading to stronger instability. On the contrary, when
study the turbulence-induced solution, then the same inte
tion plays the role of inertia. In that case the flame-flo
interaction generates potential modes in the fuel mixture
in the burnt matter at the expense of the turbulent energy,
reduces the effect of turbulence on the flame front. Since
flame-flow interaction is stronger at largerQ, the result of
the turbulence-induced solution becomes weaker at la
thermal expansion in agreement with Eq.~34!. To illustrate
the above tendency we would also like to mention that s
bilization of the DL instability by acoustic waves increas
strongly the amplitude of the turbulence-induced solut
@28#. The resonance of the turbulence-induced harmonic w
the wavelength equal to the cutoff wavelength of the
instability, l5lc , obtained in Ref.@25# is another manifes-
tation of the same tendency.

Still, the model analysis@11,15# shows that finite flame
thickness may increase the coefficientCt noticeably in com-
parison with Eq.~34!. One more effect, which has not bee
taken into account in reasoning~23!–~33!, is fast propagation
of a flame front along the vortex axis. This is a nonline
effect related to nonzero thermal expansion@29#, which also
contributes to the flame velocity increase in an external
bulent flow. Thus, since the theory of weakly curved turb
lent flames is not completed yet, in what follows it would
reasonable to treatCt as a factor of order of unity.

V. THE EXTERNAL TURBULENCE AND THE DL
INSTABILITY WORK TOGETHER FOR STRONGLY

CORRUGATED FLAMES

Taking into account the velocity increase for a weak
wrinkled flame, Eqs.~14! and~15!, and assuming self-simila
properties of a flame front at different length scales we
find the velocity of a strongly corrugated flame influenc
both by the external turbulence and the DL instability. On
basis of Eqs.~8! and ~12! the velocity increase produced b
one narrow band in the turbulent spectrum may be written

dU/U52«dl~k!dk2Ct

« t~k!

U2
dk ~35!

or

1

2

d

dk
~U2!52«dl~k!U22Ct« t~k!, ~36!

where the term«dl5D/k for kmax,k,kc is related to the
DL instability and « t is the spectrum of turbulent energ
which is nonzero forkt,k,kn . Thus we come to a linea
06630
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differential equation with coefficients depending on the va
able, Eq.~36!, which may be solved analytically by a stan
dard method. Still the solution to Eq.~36! takes different
forms for different values of the problem parametersD,
kmax, kt , kc , kn , andUrms /U f . Not all of these parameter
may be varied independently in a combustion experime
Particularly, the geometry of the burning chamber usua
determines the integral turbulent length scaleLt , the maxi-
mal hydrodynamic length scalelmax, and the respective
wave numberskt52p/Lt , kmax52p/lmax with kmax<kt .
The integral length scale may be equal to the maximal len
scale when turbulence is produced directly by the walls
the burning chamber. On the contrary, the integral len
scale is smaller than the maximal length scale when the fl
involves a special contraption~grid, fans, etc.! intended to
break large scale eddies into smaller ones. An example
such a flow may be found in Ref.@34#. Parameters of the fue
mixture specify the planar flame velocity and thickness,U f

andL f , as well as the DL cutoff wave numberkc}L f
21 and

the fractal excessD. On the contrary, the Kolmogorov cutof
wave numberkn depends on the turbulent intensity via th
turbulent Reynolds numberkn /kt5Re3/4, where the Rey-
nolds number is defined as Re5UrmsLt /n, andn is the ki-
nematic viscosity@30#. Taking into account the relation be
tween the planar flame parametersU fL f5n th5n/Pr, where
n th is thermal diffusivity and Pr is the Prandtl number, w
may present the Reynolds number in the form
5(UrmsLt)/(PrU fL f). Then the Kolmogorov cutoff wave
number may be evaluated as

kn5ktS UrmsLt

PrU fL f
D 3/4

. ~37!

For fixed parameters of the burning chamber and the
mixture we get smaller Kolmogorov cutoff wave number f
smaller turbulent intensity. Stillkn cannot be smaller thankt
since turbulence decays for Re,1. Below, we will consider
the case of very large turbulent length scaleskt!kc , kt
!kn and different relations between the DL cutoffkc and the
Kolmogorov cutoffkn , which depends on the turbulent in
tensity.

A. knËkc

First, we consider intermediate wave numberskn.k.kt
>kmax. Solution to Eq.~36! may be written as

U25C1S k

kc
D 22D

12Ctk
22DE

k

kn
h2D« t~h!dh, ~38!

where the integration constant isC15U f
2 , since at short

wavelengthsk.kc.kn the DL instability is suppressed b
thermal conduction, there is no external turbulence, and
haveU5U f at k5kc . Keeping in mind the expression fo
the spectral density« t(k) of the Kolmogorov turbulent ki-
netic energy and assuming a broad turbulent spectrum
Lt@lc we find different solutions~38! for different values of
the fractal excessD,1/3, D51/3, andD.1/3. WhenD
Þ1/3, then solution~38! is
4-5
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U25U f
2S k

kc
D 22D

1
2CtUrms

2

3D21

3F12S kt

kn
D 2/3G21S k

kt
D 22/3F S kn

k D 2D22/3

21G . ~39!

Below, we takek!kn , which is the most interesting in prac
tice. Then in the case of small fractal excessD,1/3 we
obtain from Eq.~39!

U25U f
2S k

kc
D 22D

1
2Ct

123D
Urms

2 S k

kt
D 22/3

~40!

or

U25U f
2S k

kc
D 22D

1
2Ct

123D
urms

2 , ~41!

sinceurms
2 5Urms

2 (k/kt)
22/3. Takingk5kmax<kt we come to

the formula for the turbulent flame velocity produced by t
whole spectrum of wrinkles:

Uw
2 5U f

2S lmax

lc
D 2D

1
2Ct

123D
Urms

2 . ~42!

The above result obviously reproduces the Pocheau form
~9! in the limit of no thermal expansionQ51 with no influ-
ence of the DL instability whenD50 andCt51. WhenQ is
large and the DL instability influences flame dynamics, th
the velocity of flame propagation, Eq.~42!, is larger than Eq.
~9! for two reasons: the first term on the right-hand s
increases by the fractal-related factor (lmax/lc)

2D and the
second term increases by the factor (123D)21, which
comes due to the coupling of the instability and the exter
turbulence.

In the case of large fractal excessD.1/3 solution~39! is

U25U f
2S k

kc
D 22D

1
2Ct

3D21
urms

2 S k

kn
D 22D12/3

~43!

for an intermediate wave numberkn@k.kt and

Uw
2 5U f

2S lmax

lc
D 2D

1
2Ct

3D21
Urms

2 S Lt

Ln
D 2D22/3

~44!

for the whole spectrum of flame wrinkles.
The parameter valueD51/3 is special for Eq.~38! with

the Kolmogorov spectrum of external turbulence« t(k)
}k25/3. At the same timeD51/3 is the most interesting
from the point of view of the experimental results@5,6#. Tak-
ing D51/3 we obtain from Eq.~38! that

U25U f
2S k

kc
D 22/3

1
4

3
CtUrms

2 S k

kt
D 22/3

ln~kn /k!, ~45!

or

U25U f
2S k

kc
D 22/3

1
4

3
Cturms

2 ln~kn /k!. ~46!
06630
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For the whole spectrum of flame wrinkles we find the velo
ity of flame propagation,

Uw
2 5U f

2S lmax

lc
D 2/3

1
4

3
CtUrms

2 ln~Lt /Ln!. ~47!

When turbulent intensity is zeroUrms50, then Eq.~47! goes
over to the velocity increase produced by the DL instabil
only, Eq. ~10!. Using the relation between the turbulent a
Kolmogorov length scalesLt /Ln5Re3/4 we may also presen
Eq. ~47! in the form

Uw
2 5U f

2S lmax

lc
D 2/3

1Ct ln~Re!Urms
2 . ~48!

Comparing the second terms in the velocity increase in E
~9! and~48! ~the terms related to the external turbulence! we
can see that the turbulent term in Eq.~48! is multiplied by a
large factor ln Re@1, which makes the effect of externa
turbulence much stronger in the presence of the strong
instability.

B. knÌkc

The case ofkn.kc is more typical for combustion experi
ments than the opposite situationkn,kc studied in the pre-
ceding section. In the case ofkn.kc we have to consider
separately two domains of large and small wave numb
~short and long wavelengths!, kc,k,kn andkt,k,kc , re-
spectively. When the wave numbers of flame wrinkles
larger than the DL cutoff,kc,k,kn , then one should expec
from Eq. ~35! that the velocity of flame propagation in
creases because of the external turbulence only. Howev
has been shown in Refs.@11,15,25# that flame response to
external turbulence is quite different for large and sm
wave numbers. In the case of a wave number larger than
DL cutoff, k.kc ~small length scales!, thermal conduction
suppresses strongly all wrinkles at the flame front, and
assumption of a self-similar flame behavior breaks dow
This conclusion is also supported by the experime
@25,31–33#. Particularly, according to Ref.@32#, the inner
cutoff wavelength in the spectrum of flame wrinkles is a
most independent of turbulent intensity expressed by us
the Karlovitz number in a rather large domain 0.1,Ka
,10. Instead, the inner cutoff wavelength is equal appro
mately (10–40)L f for different fuel mixtures, which is well
correlated with the typical cutoff wavelength of the DL in
stability lc5(20250)L f @1–3,24,25#. Because of the strong
thermal suppression, the harmonics of external turbule
with large wave numbersk.kc ~small wavelengthl,lc)
wrinkle the flame front only slightly and produce almost n
increase in the flame velocityU(kc)'U f . Of course, such a
conclusion holds only for moderate turbulent intensity. I
creasing the turbulent intensity we may produce strong w
kling of the flame front even at large wave numbersk.kc ,
but in that case turbulence works against thermal conduc
modifying the inner structure of the flame front. Howeve
when the inner flame structure is modified, we go over fro
4-6
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the flamelet regime of turbulent burning to the regime
thickened flames, which is beyond the scope of the pre
paper.

For small wave numberskt,k,kc ~large wavelengths
Lt.l.lc) the solution to Eq.~36! is

U25C2S k

kc
D 22D

12Ctk
22DE

k

kc
h2D« t~h!dh, ~49!

where the integration constant isC25U2(kc)'U f
2 , since

the velocity of flame propagation atk5kc is approximately
equal to the planar flame velocity. Then we may write t
solution, Eq.~49! similar to that in Sec. IV A replacingkn by
kc . Particularly, the counterparts of formulas~39!, ~42!, ~44!,
and ~47! are

U25U f
2S k

kc
D 22D

1
2CtUrms

2

3D21

3F12S kt

kn
D 2/3G21S k

kt
D 22/3F S kc

k D 2D22/3

21G ~50!

for DÞ1/3,

Uw
2 5U f

2S lmax

lc
D 2D

1
2Ct

123D
Urms

2 ~51!

for D,1/3, kc@kt ,

Uw
2 5U f

2S lmax

lc
D 2D

1
2Ct

3D21
Urms

2 S Lt

lc
D 2D22/3

~52!

for D.1/3, kc@kt , and

Uw
2 5U f

2S lmax

lc
D 2/3

1
4

3
CtUrms

2 ln~Lt /lc! ~53!

for D51/3.

VI. RESULTS AND DISCUSSION

The most illustrative way to present the formulas, E
~51!–~53!, in a figure is to plot square of the flame veloci
versus square of the turbulent velocity. In that case we h
a family of straight lines depending on the problem para
eters. For example, Fig. 1 illustrates the dependence of
flame propagation velocity on the turbulent intensity for d
ferent values of the integral turbulent length scalelmax/lc
510, 50, and 100. To be particular, in Fig. 1 we have cho
Lt5lmax and the fractal excess of the unstable laminar fla
front D51/3 similar to the experimental results@5,6#. As we
can see in the figure, the larger are the maximal hydro
namic length scale and the turbulent length scale, the la
is the velocity of flame propagation. An important point
all plots is that when turbulent intensity is zero,Urms50, the
velocity of flame propagation,Uw , is still different from the
planar flame velocityU f . This effect happens because of t
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DL instability working alone without external turbulence. W
can see in Fig. 1 that the instability is stronger at larg
hydrodynamic length scale allowed by the flow geomet
When turbulent intensity is nonzero, we have an increas
the flame velocityUw with Urms ; and the larger the integra
turbulent length scale, the stronger the increase of the fla
velocity. This additional dependence of the flame propa
tion velocity on the turbulent length scale results from t
coupling of the DL instability and the external turbulen
obtained in the present paper. For comparison, Fig. 1 sh
also the turbulent flame velocity predicted by the formu
derived by Pocheau @14#, dashed line, and
Yakhot @13#, dashed-dotted line. Both papers@13,14# devel-
oped the renormalization ideas of flame dynamics for
case of zero thermal expansion whenQ51 and there is no
DL instability. The original paper@13# started the approach
of scale-invariant flame behavior, but the paper@14# cor-
rected an inconsistency in the analysis of Ref.@13#, which
led to another formula for the velocity of flame propagatio
As we can see, the velocity of flame propagation is mu
smaller in the case ofQ51 @14# when the DL instability
does not influence flame dynamics. The results of the pre
paper and Ref.@14# come closer for small values of the max
mal hydrodynamic length scale. Still, it is incorrect to thin
that the results of the present paper go over to the result
Ref. @14# when the hydrodynamic length scale gets smal
Instead, if the hydrodynamic length scale tends to the cu
wavelength of the DL instability,lmax→lc ~taking into ac-
countlmax>Lt), then according to Eq.~53! the velocity of
flame propagation tends to the planar flame veloc
Uw→U f . The rigorous transition from the present theory
the theory of Ref.@14# happens in the limit of small therma
expansion whenQ→1 and, consequently,D→0. In order to
investigate such transition, in Fig. 2 we present the veloc
of flame propagation versus turbulent intensity for differe
values of D51/6, 1/3, and 1/2. WhenD50, the present
theory coincides with the theory of Ref.@14#. We have taken
lmax/lc520 andLt5lmax in the figure. As we can see in
Fig. 2, the larger the fractal excessD provided by the DL

FIG. 1. Scaled flame velocity square (Uw /U f)
2 vs the scaled

turbulent velocity square (Urms /U f)
2 for different ratioslmax/lc

510, 50, and 100~solid lines!, Lt5lmax, andD51/3. The dashed
and dash-dotted lines show the results by Pocheau@14# and
Yakhot @13#, respectively.
4-7
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VITALY BYCHKOV PHYSICAL REVIEW E 68, 066304 ~2003!
instability, the larger the velocity of flame propagation. F
small values of the fractal excess the plots do tend to
Pocheau result, and this tendency is independent of the
gral turbulent length scale.

It is also interesting to compare the present results to
experiments on turbulent flames. In that sense, the m
popular experimental publication is a reviewlike paper@4#,
where a large number of previous experimental results fr
36 papers totally have been collected together with the
sults obtained by the authors of Ref.@4#. The results pre-
sented in Ref.@4# have been obtained in different geometri
of burning with the characteristic hydrodynamic leng
scales ranging from several centimeters up to 30 cm of
burning chamber used by the authors of Ref.@4#, and even
larger. Let us estimate the characteristic values of the r
lmax/lc involved in such experiments. Taking the typic
velocity of experimental flames in the range ofU f
5(20–200) cm/s, we obtain the flame thicknessL f.n/U f
51023–1022) cm. According to the linear theory of the D
instability @1–3,24,25#, the typical value of the cutoff wave
length is aboutlc550L f , that is,lc50.0520.5 cm, which
specifies the characteristic domain for the ratiolmax/lc
510–103. Figure 3 compares the present theoretical res
to the experimental results@4#. The theoretical curves ar
plotted according to Eq.~53! for D51/3, lmax/lc510
2103, andLt5lmax. As we can deduce immediately from
Fig. 3, the experimental results do not fall into one curve,
look more like a cloud. Therefore, numerous attempts to
scribe such a ‘‘cloud’’ by one simple formula such
Uw /U f5 f (Urms /U f), see Ref. @1# as a review, were
doomed from the very beginning. Even the Pocheau form
Eq. ~9!, which is probably the most mathematically rigoro
of the attempts, goes well below the cloud of experimen
points. On the contrary, the present analysis includes a
tional parameters in the dependence of the flame propaga
velocity on the turbulent intensity. For this reason, instead
one curve we have a family of curves for different rati
lmax/lc510–103. As we can see in Fig. 3, for the chose
parameter domain the theoretical curves pass through

FIG. 2. Scaled flame velocity square (Uw /U f)
2 vs the scaled

turbulent velocity square (Urms /U f)
2 for different fractal excess

D51/6, 1/3, and 1/2~solid lines!, lmax/lc520, andLt5lmax.
The dashed and dash-dotted lines show the results by Pocheau@14#
and Yakhot@13#, respectively.
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middle of the cloud of the experimental points. Such agr
ment by order of magnitude is encouraging; still, it is dif
cult to use the results@4# for more detailed quantitative com
parison of the theory and the experiments. Differe
geometries of the experiments included in Ref.@4# demand
different theoretical interpretation, and analyzing all of the
requires plenty of work and another reviewlike paper such
@4#. Besides, the majority of the experiments included in R
@4# have been performed long ago, and the parameters o
turbulent flows such as the integral length scale or even
turbulent intensity involved in the experiments have be
often guessed, but not measured.

Instead we will concentrate on one recent experimen
paper@34#. The advantage of the experiments@34# for the
present comparison is that they have been performed
well-developed turbulent flames propagating in a statistica
stationary regime in a tube with a rectangular cross sect
The cross-section parameters were 933.5 cm2 with the di-
agonal 9.7 cm controlling 1/2 of the maximal possible wav
length of the DL instability,lmax. At the same time, accord
ing to Ref.@34#, the integral turbulent length scale was mu
lower, Lt'0.5 cm, so that one has to be careful when app
ing formulas of the present paper to the experimental con
tions of Ref.@34#. The experiment@34# has been performed
for propane flames with equivalence ratiosf50.75, 1, and
1.25. Taking the planar flame velocity and thermal diffusiv
n th for propane flames from Ref.@35# we calculate the re-
spective flame thicknessL f5n th /U f5831023, 4.9
31023, 5.631023 cm. The cutoff wavelength of the DL
instability for the propane flames may be evaluated
lc /L f'60, see Ref.@36#, and we findlc'0.48, 0.29, and
0.34 cm forf50.75, 1, and 1.25, respectively. Adopting th
turbulent length scaleLt'0.5 cm in agreement with Ref
@34# we can see that the effect of turbulence should be w
for all equivalence ratios considered, since the param
Lt /lc is close to unity in all three casesLt /lc51.04, 1.7,
and 1.5. On the contrary, the characteristic hydrodyna
length scalelmax is rather large,lmax/lc540.4, 84.2, and
57.7, and we should expect a noticeable DL instability. F

FIG. 3. Scaled flame velocity vs scaled turbulent velocity
different ratioslmax/lc510–103 ~solid lines! with Lt5lmax. The
dashed and dash-dotted lines show the results by Pocheau@14# and
Yakhot @13# respectively. The markers show the experimental
sults @4,8,12#.
4-8
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ure 4 compares the theoretical formula, Eq.~53!, to the ex-
perimental results@34# presented by crosses (f50.75),
circles (f51), and triangles (f51.25). As we can see in
Fig. 4, in the cases off51, 1.25, the theoretical curve
agree rather well with the experimental results both qual
tively and quantitatively. The quantitative difference
within 15–25 %, which may be explained by the experime
tal errors and inevitable simplifications of the theory. T
important property of the experimental points is that for ze
turbulent intensity,Urms50, they tend to some velocity o
flame propagation,Uw , exceeding the planar flame veloci
U f noticeably. This tendency is especially evident for t
stoichiometric flamef51, for which the velocity of flame
propagation is almost independent of the turbulent inten
and equal toUw /U f53.75–4. In the case off51.25 the
velocity of flame propagation varies also rather weakly
cept for one measured point at lower turbulent intens
Urms /U f51.2. Still, even that point is not far from the the
oretical curve. The agreement between the theoretical
experimental results is not so good only for the equivale
ratio f50.75, though even in that case we can observe
same qualitative tendencies as forf51, 1.25. Particularly, if
we extrapolate the experimental points to the case of z
turbulent intensity, then the flame propagation veloc
Uw /U f will be considerably larger than unity, abou
Uw /U f54 –5. However, unlike the theoretical curve forf
50.75, the experimental points show noticeable increas
the flame velocity for increasing turbulent intensity. A po
sible explanation of the disagreement between the theory
the experiment in the case off50.75 is that the integra
turbulent length scale has not been, actually, measure
Ref. @34#. Instead, the authors referred to previous meas
ments for ‘‘a nearly identical burner.’’ Still, the integral tu
bulent length scale is one of the most important parame
in the present theory, and the uncertainty in the experime
value ofLt is crucial for the comparison of the theory and t
experiment. Besides, viscous effects influenced the exp
mental results of Ref.@34# considerably. The condition of no

FIG. 4. Scaled flame velocityUw /U f vs scaled turbulent veloc
ity Urms /U f for the experimental configuration@34# with different
equivalence ratiosf50.75, 1, and 1.25~solid lines!. The markers
show the experimental results forf50.75~crosses!, f51 ~circles!,
andf51.25 ~triangles! @34#.
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slip at the walls resulted in additional curvature of the flam
front, which the authors of Ref.@34# tried to eliminate by
phenomenological correction factors to the velocity of flam
propagation. The uncertainty in the correction factors may
the other reason for the poor quantitative agreement betw
the theory and the experiment forf50.75. Before the cor-
rections were performed, the experimental points@34# corre-
sponding to different equivalence ratiosf50.75, 1, and 1.25
were correlated much better. Unfortunately, to the best of
knowledge, so far there has been no theoretical investiga
of the DL instability with viscous conditions of no slip at th
walls. Therefore at present it is impossible to compare
theory and the experimental points@34# directly as they have
been measured without the phenomenological correctio
Finally, if the integral turbulent length scale was indeed
small as it was stated in Ref.@34#, that is,Lt'0.5 cm, then in
the case off50.75 we have an interesting situation whenLt
is approximately equal to the cutoff wavelength of the D
instability Lt'lc . In that case the multiscaled approach pr
posed in Ref.@14# and used in the present paper may wo
for the DL instability, but not for the turbulence-induce
terms. On the contrary, in that case finite thickness of
flame front becomes of basic importance for the turbulen
induced solution, since it leads to a resonance atLt5lc ; see
Refs.@11,25#. Because of the resonance the coefficientCt of
the turbulence-induced solution may increase considera
resulting in a much larger velocity of flame propagation, as
shown by the experimental points of Fig. 4.

There is one more interesting point in the comparison
the experimental and theoretical results which should be
cussed. The theoretical curves of Figs. 3 and 4 predic
rather large velocity of flame propagation,Uw /U f , for zero
turbulence intensityUrms /U f50 when the DL instability
works alone. The experimental points of Fig. 4, Ref.@34#,
demonstrate the same tendency. At the same time, the ex
mental points of Fig. 3, Ref.@4#, obviously tend to unity for
zero turbulent intensity,Uw /U f→1 for Urms /U f→0. In or-
der to understand this ‘‘contradiction’’ we have to take in
account the details of the experiments of Ref.@4#. The theo-
retical curves of Figs. 3 and 4 and the experimental points
Ref. @34# are plotted for a fixed hydrodynamic length scale
the DL instability and a fixed integral length scale of th
turbulent flow. On the other hand, the original experiments
Ref. @4# and most of the previous experiments compiled
that paper have been performed for developing flames
that case flame propagates from a center of a burning ch
ber, and the turbulent intensity experienced by the fla
front in a particular time instant depends on the length sc
l characterizing flame dynamics at that instant. Followi
the designations of the present paper, such an experim
provides the dependenceU5U(l,urms) with l5l(urms)
instead of the dependenceUw5Uw(lmax,Lt ,Urms) given by
Eq. ~53! and plotted in Figs. 3 and 4. Then the points w
small turbulent intensity correspond to small length scalel
at the beginning of flame propagation, which are mu
smaller than the maximal integral length scaleLt or the in-
stability length scalelmax allowed by the geometry of the
burning chamber. The DL instability is suppressed for the
points by thermal conduction and finite flame thickness.
4-9
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VITALY BYCHKOV PHYSICAL REVIEW E 68, 066304 ~2003!
the flame radius grows, the characteristic length scale of
flame dynamicsl increases and the DL instability develop
at the flame front. Besides, the flame interacts with turbu
vortices of a larger size, which implies stronger turbule
intensity. If the integral Reynolds number of the turbule
flow is sufficiently large, then we can present the depende
U5U(l,urms) as a function of the turbulent intensity on
using the Kolmogorov spectrumurms5Urms(l/Lt)

1/3, or l
5Lt(urms /Urms)

3. To be particular, we chose the most typ
cal case ofkt!kc,kn and D51/3. Then, according to Eq
~53!, the instant velocity of flame propagation depends
the local turbulent intensity as

U25U f
2

urms
2

Urms
2 S Lt

lc
D 2/3

1
4

3
Cturms

2 lnS urms
3 Lt

Urms
3 lc

D ~54!

for l.lc . Besides,U5U f for l,lc , since the velocity of
flame propagation cannot be smaller than the planar fla
velocity U f . It is interesting to note that both the turbule
term and the term related to the DL instability in Eq.~54! are
formally proportional tourms

2 . Indeed, the outcome of th
DL instability depends on the characteristic length scalel,
which, in turn, is coupled to the turbulent intensity for
developing flame. It is convenient to rewrite the above f
mula with the help of the parameter

b5
Urms

U f
S lc

Lt
D 1/3

. ~55!

The introduced parameter compares the planar flame velo
U f and the turbulent velocity at the length scale equal to
DL cutoff wavelengthUrms(lc /Lt)

1/3. The parameterb is
similar to the Karlovitz number, but it works better in th
present studies. Besides,b is unambiguously specified, whil
the Karlovitz number involves the poorly defined Taylor m
croscale, which requires extra assumptions and calculati
Following Ref. @4# we may relate the parameterb to the
Karlovitz number as b53.44Ka2/3(lc /L f)

1/3, or b
512.7Ka2/3 in the case oflc /L f550 considered in Fig. 3
Then Eq.~54! goes over to

U5urms@b2214ln~urms /bU f !#
1/2 ~56!

for l.lc andU5U f for l,lc . Figure 5 presents the de
pendence, Eq.~56!, for the domain 0.07,b,1.5. As we can
see in Fig. 5, if we interpret the experimental results as
instant propagation velocity of a developing flame front, th
the theoretical curves look quite different from Fig. 3: th
start at the planar flame velocity for zero turbulent intens
and then we have almost linear growth of the flame veloc
with turbulent intensity~which depends on the length sca
of flame dynamics!. Such a shape of the theoretical curv
resembles qualitatively the look of clusters of the experim
tal points selected in Ref.@4# according to the Karlovitz
number. In Fig. 5 we have shown different clusters by d
ferent markers: crosses for 0.015,Ka,0.025 (0.7,b,1),
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triangles for 0.045,Ka,0.060 (1.6,b,1.9), and circles
for 0.12,Ka,0.17 (3,b,4). The experimental points
present the velocity of flame propagation with respect to
fuel mixture, which is different from the flame velocity ob
served in the laboratory reference frame. As we can se
Fig. 5, the smaller the Karlovitz number and the parame
b, the larger the velocity of flame propagation. Such a t
dency was pointed out in Ref.@4# on the basis of experimen
tal studies and put in a phenomenological formula for
velocity of flame propagation. The present theory expla
this tendency from the first principles. Indeed, if the value
the Karlovitz number~or the parameterb) is small, then the
same turbulent intensity is achieved at larger length sca
At the same time larger length scales lead to stronger
instability and stronger coupling between the instability a
the external turbulence, expressed by the factors of the
and second terms in Eq.~53!. As a result, we have a large
velocity of flame propagation for smaller values of Ka~or
b). Comparing the respective theoretical curves and
clusters of experimental points quantitatively, we can see
the theoretical results go somewhat below the experime
points. However, we would like to remind the reader that
experimental points of Ref.@4# have been collected from
large number of papers involving different experimental co
figurations. For this reason one cannot expect high accu
from the quantitative comparison, since different experim
tal configurations require different interpretations of t
theory. Looking at the theoretical curves in Figs. 3 and 5
can see how large is the difference between these two t
retical interpretations of the experimental results. Usually
periments involve a large number of extra effects, wh
have not been included in the present theory. For exam
the present theory does not take into account the effect
closed burning chamber used in the original experiments
Ref. @4#. A closed burning chamber results in precompress
of the fresh fuel mixture, which increases turbulent intens
and planar flame velocity and decreases flame thickness,
leading to a larger velocity of turbulent flame propagatio

FIG. 5. Scaled flame velocityU/U f vs scaled local velocity of
external turbulenceurms /U f for a developing flame withb
50.07–1.5~solid lines!. The markers show the experimental resu
@4# for b50.7–1 ~crosses!, b51.6–1.9 ~triangles!, and b53 –4
~circles!.
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Flame interaction with acoustic waves is another import
effect, which we should expect in a closed burning cham
As has been pointed out in Refs.@28,36,37#, the flame-
acoustic interaction may influence the velocity of flam
propagation quite strongly damping the DL instability a
increasing the effect of the turbulence-induced solution. T
indicates that we should be very careful interpreting a p
ticular experiment. For example, it has been questioned
Ref. @38# if the turbulent flames observed in the majority
combustion experiments are statistically stationary, or t
present an intermediate asymptotic in the flame dynam
Strictly speaking, the theoretical results of the present pa
consider a statistically stationary turbulent flame, and co
parison of the theory with experiments on developing flam
may be misleading. Finally, we would like to mention o
more limitation of the present theory. In the present paper
have assumed indirectly that the flame is unstable with
spect to the DL instability only. An additional therma
diffusion instability ~the Zeldovich instability! @39,40# may
reduce the cutoff wavelengthlc down to the flame thicknes
and below instead of the large valueslc5(20–50)L f , typi-
cal for the DL instability. According to Eq.~53!, small values
of the cutoff wavelength make the flame instability mu
stronger, thus increasing the turbulent flame velocity. T
effect of noticeably faster propagation of a turbulent fla
front affected by the thermal-diffusion Zeldovich instabili
has been observed in recent experiments@41#.
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VII. SUMMARY

We have developed the ideas of the self-similar multisc
behavior of a strongly corrugated flame front@14# to the case
of a flame influenced both by the external turbulence and
the DL instability. The obtained analytical formulas@with Eq.
~53! describing the most typical situation# demonstrate rathe
strong coupling between external forcing of the flame fro
by turbulence and intrinsic flame dynamics. The results
tained refute the widely spread idea that the DL instability
of minor importance for the turbulent flames. Instead,
developed theory demonstrates that the DL instability is
principal importance when the characteristic hydrodynam
length scale is large. The case of large hydrodynamic len
scales is typical for the majority of combustion configur
tions corresponding to the flamelet regime of burning. T
obtained analytical results agree well with experiments. S
in order to perform a careful quantitative comparison one
to take into account details of a particular experiment, sin
even in scope of the same theory we come to quite differ
formulas for the turbulent flame velocity for different expe
mental flows, see, for example, Eqs.~53! and ~56!.
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